5 research outputs found

    Shape Memory Polyurethane-Based Smart Polymer Substrates for Physiologically Responsive, Dynamic Pressure (Re)Distribution.

    Get PDF
    Shape memory polymers (SMPs) are an exciting class of stimuli-responsive smart materials that demonstrate reactive and reversible changes in mechanical property, usually by switching between different states due to external stimuli. We report on the development of a polyurethane-based SMP foam for effective pressure redistribution that demonstrates controllable changes in dynamic pressure redistribution capability at a low transition temperature (∼24 °C)-ideally suited to matching modulations in body contact pressure for dynamic pressure relief (e.g., for alleviation or pressure ulcer effects). The resultant SMP material has been extensively characterized by a series of tests including stress-strain testing, compression testing, dynamic mechanical analysis, optical microscopy, UV-visible absorbance spectroscopy, variable-temperature areal pressure distribution, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, differential scanning calorimetry, dynamic thermogravimetric analysis, and 1H nuclear magnetic resonance spectroscopy. The foam system exhibits high responsivity when tested for plantar pressure modulation with significant potential in pressure ulcers treatment. Efficient pressure redistribution (∼80% reduction in interface pressure), high stress response (∼30% applied stress is stored in fixity and released on recovery), and excellent deformation recovery (∼100%) are demonstrated in addition to significant cycling ability without performance loss. By providing highly effective pressure redistribution and modulation when in contact with the body's surface, this SMP foam offers novel mechanisms for alleviating the risk of pressure ulcers

    Roll-to-roll fabrication of silver/silver chloride coated yarns for dry electrodes and applications in biosignal monitoring

    No full text
    Abstract This work presents a continuous roll-to-roll electrochemical coating system for producing silver/silver chloride (Ag/AgCl)-coated yarns, and their application in e-textile electrodes for biosignal monitoring. Ag/AgCl is one of the most preferred electrode materials as an interface between the conductive backbone of an electrode and skin. E-textile Ag/AgCl-coated multi-filament nylon yarns offer stable, flexible, and breathable alternatives to standard rigid or flexible film-based Ag/AgCl electrodes. The developed system allows for highly controlled process parameters to achieve stable and uniform AgCl film deposition on Ag-coated nylon yarns. The electrical, electrochemical properties, and morphology of the coated yarns were characterized. Dry electrodes were fabricated and could measure electrocardiogram (ECG) signals with comparable performance to standard gel electrodes. Ag/AgCl e-textile electrodes demonstrated high stability, with low average polarization potential (1.22 mV/min) compared with Ag-coated electrodes (3.79 mV/min), low impedance (below 2 MΩ, 0.1–150 Hz), and are excellent candidates for heart rate detection and monitoring
    corecore